D: HBT	(p. 1)	ECSE 573	2006
[1] Int	roduction		
[2] Pri	nciples of a conv	entional npn bipolar jun	ction transistor
	Cross-section, st electric field dist	ructure, doping distribut	ion,
	nitter injection ef nventional npn tr	ficiency, base transport ansistor.	factor, gain of
	nitations of the c ncy operation	onventional npn transist	or for high
[5] Int	roduction to hete	rojunctions	
[6] Di	fference between	a heterojunction and a h	nomojunction
	ucture, electric fi er and base spacir	ield and dopant distribut	ion of a HBT.
[8] Cu	rrents in a HBT		
J	Emitter injection	efficiency	
]	Base transport fac	ctor	
(Gain		

D: HBT (p. 2)
[9] Non-ideal characteristics
Current gain fall-off
Two-dimensional current flow
Emitter crowding
Energy-gap narrowing
Device self-heating
[10] Gain collapse in HBTs
Characteristics, sources of gain collapse, prevention methods
[11] Small signal characteristics
Simplified circuit model
RF models for common base and common emitter
[12] Cut-off frequency of HBT
[13] Power-frequency performance
[14] Some examples of HBT device applications.
[15] A comprehensive survey on the development and evolution of HBT devices

E: HBT (p. 3)

[16] A survey on the manufacturers of microwave and millimeter wave circuits involving HBTs.

[17] Evolution of the microwave and millimeter wave markets involving HBTs.

Presentation package No. D -1:	items [1] to [4]	Hadley	10/26
Presentation package No. D -2:	items [5] to [8]	Qing	10/31
Presentation package No. D -3:	items [9] to [11]	Guillaume	11/02
Presentation package No. D -4:	items [12] to [17]	Li	11/07

References:

[1] "Handbook of III-V Heterojunction Bipolar Transistors," by William Liu, Wiley InterScience, 1998.

[2] "SiGe, GaAs, and InP Heterojunction Bipolar Transistors," by Jiann S. Yuan, Wiley, 1999.

[3] "Fundamentals of III-V Devices," by William Liu, Wiley InterScience, 1999.

[4] Papers from IEEE Microwave Theory and Techniques (IEEE-MTT)

[5] Papers from "Microwave Journal" and "Microwave and Optical Technology Letters."