E: PHEM	Г (р. 1)	ECSE 573	2006
[1] Intro	oduction		
(•	onal MOSFET transist re, doping distribution ion	
inversio [4] Cur	on mode, pinch-off. rent-voltage characte	ulation mode, depletion ristics. Equivalent circ nology for RF circuit a	cuits.
	itations of the conver oduction to MESFET		high frequency operation
[8] Diff	erences between a M	IOSFET and a MESF	ET.
[9] Met	al-semiconductor Scl	hottky junctions	
	ructure, electric field , source contact and c	1	on of a MESFET. Gate
D		with voltage, pinch-of	f
6	ain		

[12] Non-id	eal characteristics
	channel MESFET limensional current flow
[14] Small s Simp	f frequency and power-frequency performance. signal characteristics lified circuit model nodels for MESFETs
wave applic	of MESFET technology for microwave and millimeter ations. Introduction to two application examples.
	igh electron mobility in FETs is required and eve the high mobility (principles)
[18] HEMT	s in InP and GaAs systems
[19] Structu	re of PHEMTs in InP system

E: PHEMT (**p. 3**) [20] equivalent circuit of a PHEMT [21] Advantages of the PHEMT over MESFETs [22] Introduction to PHEMT circuits for millimeter/microwave applications. [23] A comprehensive survey on the development of PHEMT devices [24] A survey on the manufacturers of microwave and millimeter wave circuits involving PHEMTs. [25] Evolution of the microwave and millimeter wave markets involving PHEMTs. Presentation package No. D-1: items [1] to [6] Hadley 11/14 Presentation package No. D-2: items [7] to [12] 11/16 Qing Presentation package No. D-3: items [13] to [18] Guillaume 11/21 Presentation package No. D-4: items [19] to [25] Li 11/23

References: [1] "Fundamentals of III-V Devices," by William Liu, Wiley InterScience, 1999. [2] Papers from IEEE Microwave Theory and Techniques (IEEE-MTT) [3] Papers from "Microwave Journal" and "Microwave and Optical Technology Letters." [4] "Semiconductor Physics and Devices, Basic Principles," 2nd Edition, by Beamen, Donald A.; Irwin McGraw-Hill, 1997.